Modeling Sustainable Adaptation Strategies towards a Climate-Smart-Agriculture in the Southern High Plains of Texas, USA

Kushal Adhikari, Venki Uddameri

TTU Water Resources Center Department of Civil, Environmental and Construction Engineering Texas Tech University, Lubbock, TX 79409

PROBLEM

- Groundwater Depletion
 - Pumping rate > Recharge rate
- Climate Change
 - Increasing temperature
 - Change in precipitation patterns

TARGET

- Maximize yield
- Optimize available water resources

SOLUTION

- Climate Smart Agriculture
 - Sustainable adaptation strategy

OBJECTIVES

- Develop a Watershed Model for the Double Mountain Fork (DMF) watershed.
 - Soil Water Assessment Tool (SWAT) adopted here
- Assess the impacts of future climate change on crop productivity.
 - Cotton response to future climate and adaptability study of dryland cotton production.

Cotton (Gossypium hirsutum)

- Texas Nation's No.1 cotton producing state.
 - High Plains contributes two-thirds of Texas cotton.
 - Cotton generates 9% of the state's total agricultural receipts and 29% of the nation's cotton revenues.
- Cotton is a drought resistant crop
 - Water requirement of around 640 mm (less as compared to other major crops grown in the region)
 - Viable crop for regions with depleting groundwater.
 - Helps sustain groundwater from the Ogallala aquifer.
- Cotton growth is controlled largely by temperature.
 - Very little growth takes place below 60°F (~16°C) or above 100°F (~37°C).
 - Air temperatures in the 90°–95°F (~30°C) is considered optimum for growth.

Double Mountain Fork Watershed

- Tributary of the Brazos River (HUC 12050004).
- Drainage area of 1466 sq. mi.
 - USGS streamflow-gaging station 08079600 DMF Brazos Rv at Justiceburg, TX
- A significant portion of the watershed overlies the Ogallala Aquifer.
 - Downstream area lies over Dockum Outcrop below the caprock.
 - Extend in the counties of Hockley, Lynn, and Garza.
 - Elevation in the watershed ranges from about 680 to 1180 meters
 - Mostly agricultural area
 - Cotton dominant (53% of watershed area) with loam and fine sandy loam soil type.

Precipitation

CCSM4-RCP4.5 (2021-2050)

CSIRO_MK3-6-0-RCP4.5(2021-2050) 8 8 150 150 Precipitation (mm) Precipitation (mm) ĝ ĝ ß ß 0 0 Aug Sep Apr May Jun Jul

MIROC-ESM-CHEM-RCP4.5 (2021-2050)

Precipitation (April-September)

- Most of the annual precipitation is observed during the growing season.
- On average, more than 50 percent of the water requirement during the growing season is supplied through precipitation (varies with climate projections)
 - Indicates possibility of dryland cotton production

Temperature

Accumulated Base Zero Heat Unit

- Increase in the minimum and maximum temperatures.
- Annual averages are higher as compared to historic.
- Increase in accumulated base zero heat units.
 - Plants can accumulate required heat units for growth earlier than the historic.

SWAT Calibration and Validation

- Multi-criteria calibration
 - Streamflow comparison with observed flows from USGS gaging station at Justiceburg, TX
 - ET comparison with lake ET data from TWDB
 - Crop Yield data USDA-NASS
- Evaluation using multiple metrics (Moriasi et al., 2007)
 - Nash-Sutclife Criterion (NSE)
 - Percent Bias (PBIAS)
 - Root Mean Square Error / Standard Deviation (RSR)

Metrics	Target	Streamflow (Validation)	Evapotranspiration (Validation)
NSE	≥ 0.5	0.75 (0.76)	0.58 (0.69)
PBIAS	± 25%	1.23 (-41.98)	-13.33 (-12.49)
RSR	≤ 0.7	0.49 (0.48)	0.64 (0.55)

Observed vs Simulated Streamflow

Observed vs Simulated PET

Yield Calibration and Validation

Growing season SPI and Yield

SPI And Cotton Yield Variability

- 2011 drought has significant reduction in the yield.
- 2010 observed as the wettest year during the study period with maximum yield.
- The drought duration and severity has huge impacts on drought.

Future Climate and Cotton Yield

- Increased average annual yield.
 - Effects of increased temperature during the growing season and increased CO2 levels
- Higher variability associated with the yield values.
 - Unusual climate events
 - Reduced yields during droughts
 - The variability increase with increasing levels of CO2.

Cotton Yield Variability

Future SPI and Cotton Yield

Future SPI_csiro_RCP4.5 (2021-2050)

Yield (kg/ha) R 4.0 Year

Future SPI_miroc-esm-chem_RCP4.5 (2021-2050)

0 0

Growing season SPI and Yield

Yield Variability and Drought

- Drought years are expected to have much lower average yield as compared to the normal/wet years.
- Variability observed during both the periods.
 - Effects of antecedent soil moisture
 - Timing of rainfall.

Adaptation Strategy

Normal Planting	Shift 1	Shift 2
Mid-May	End-April	Mid-April

• Earlier shift in planting dates leads to relatively higher yields.

- Projected increase in minimum and maximum temperature.
- Plants can accumulate required heat units for growth earlier as compared to historic climatic conditions.
- Projected increase in precipitation during the months of April to September
- Deficit irrigation could be applied during severe droughts.

Yield Variability with Planting Dates

Summary and Future Prospects

- Calibrated SWAT model developed for the Double Mountain Fork watershed.
 - Model simulate the physical process occurring in the system.
- Possibility of dryland cotton production under future climate.
 - More than 50 percentage of water requirement is supplied through precipitation.
 - Reduced yields projected for periods of drought.
 - Dryland production helps to sustain the life of Ogallala Aquifer.
- Early planting has higher yield values.
 - Effects of increased temperature (heat units).
 - Most of the annual rain observed during the months starting from April.
- Optimal dates for planting based on heat units.
- Use of multiple climate projections.
- Dryland vs irrigated cotton production under future climate.

Thank You!

